
 www.orcina.com

K06 FPV Array Page 1 of 8

K06 FPV array
Introduction

This example models a floating photovoltaic (FPV) array. Each raft is a rigid body that supports

four solar panels, and there are 64 of these rafts in the array in an 8x8 modular rectangular

configuration. The rafts are inter-connected using constraint objects. These make use of the

double-sided connection feature each with one free rotational degree of freedom to model hinged

connections between modules. When connected together, this forms a flexible structure on a

larger scale.

In addition to double-sided connections, this example shows how the OrcaFlex application

programming Interface (OrcFxAPI) can be used to automate the array building process. Within this,

we demonstrate how the CreateClones function can be used alongside MoveObjects to achieve

the desired configuration. Whilst we include a Python script alongside this example, Python is not

required to view or run the simulation. If you wish to recreate the model demonstrated here, the

Python Interface: Installation help page provides further information on installing Python and the

Python Interface to OrcaFlex.

Included alongside this document is:

• The OrcaFlex model K06 FPV module.dat containing a single modular raft,

• the Python script K06 FPV script.py used for the building of the array,

• a simulation file K06 FPV array.sim showing the dynamics of the array and mooring system

under appropriate environmental conditions, and

• K06 FPV results.wrk, a workspace file which displays a few results.

Note: The values used in this example are arbitrary and it is always recommended that all model

data is established and compared with real data you have available.

http://www.orcina.com/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Solutionmethod.htm#DoubleSidedConnection
https://www.orcina.com/webhelp/OrcFxAPI/Redirector.htm?Pythoninterface,Installation.htm

 www.orcina.com

K06 FPV Array Page 2 of 8

Building the model

We’ve chosen to model the type of FPV array made up of, what is referred to in DNVGL-RP-0584

(Design, development and operation of FPV systems) as, ‘Modular Rafts’. These typically have a

structural framework, to which the solar panels are attached, supported by separate buoyant

members (which we have decided to call floats). This configuration allows the metal frame and

connected panels to be kept clear of the water surface and allows both the frame and floats to be

optimised for their respective functions.

The model containing a single modular raft K06 FPV module.dat was built through the OrcaFlex

graphical user interface (GUI), using a combination of lumped buoys, spar buoys, and line objects to

represent the rigid body. To simplify the model, we chose not to include floating maintenance

walkways or any electrical components in our system.

Due to the array’s modular design, our model for a single raft can be used as a source model from

which we duplicate multiple rafts, before connecting these together to produce the array. We

chose to automate this process using the OrcFxAPI and this is demonstrated in the Python script

K06 FPV script.py. If you’re unfamiliar with the Python interface to OrcaFlex, then an introduction

can be found on the documentation page of the Orcina website. The OrcFxAPI help can also be

accessed from the same page, or via the OrcaFlex Help menu.

Running the script produces an array and saves the new model as a .dat file. Whilst building a

mooring system is also possible through the API, we chose to return to the GUI and make use of

the full capabilities and visualisation strengths of OrcaFlex to aid us in the building and design

process. We demonstrate the mooring system and array dynamics in K06 FPV array.sim.

We model the array dynamics under an example environment with wind, waves and current

applied. Full details of the environmental conditions applied are presented below in the

‘Environment’ section. It’s important to note that we only consider waves with a long enough

wavelength such that diffraction effects of the elements in our raft are insignificant. This approach

assumes that Morison’s equation applies and we therefore proceed with modelling the raft using

6D buoy and line objects. Alternatively, in cases where diffraction effects dominate, a vessel object

could be used for a potential-flow theory approach. It is ultimately down to the user to choose

which modelling approach to take.

Modelling a single raft

In our model K06 FPV module.dat, the floats are modelled using 6D spar buoys, named FloatA, FloatB,

FloatC and FloatD, situated at the four corners of the module. Each buoy is modelled as a stack of

co-axial cylinders, as explained on the Modelling, data and results | 6D buoys | Spar buoy and

towed fish properties help page. Surface piercing is considered on a per-cylinder basis and used

to calculate the hydrodynamic loads for each individual cylinder, which are then summed to obtain

the total load on the buoy. We are therefore required to define the drag and added mass data on

a per-cylinder basis. It would be possible to account for shielding between adjacent floats by

setting the drag areas accordingly, but this is an effect we chose to ignore. Ultimately, the more

cylinders used, the more accurately the hydrodynamic loads on the spar buoys can be captured.

For the floats, we chose to use six of these cylinders. This is explained in more detail in the Buoy

discretisation technical note published on the Orcina website and further detailed guidance on

modelling a surface-piercing buoy can be found on the relevant help page.

The metal truss structure is modelled using multiple line objects, connected using line-to-line

connections with infinite end connection stiffness. The line type, Steel tubular, used for these lines

makes use of the homogeneous pipe line type category. This is useful for modelling pipes

http://www.orcina.com/
https://www.orcina.com/wp-content/uploads/training/An%20introduction%20to%20the%20Python%20interface%20to%20OrcaFlex.zip
https://www.orcina.com/resources/documentation/
https://www.orcina.com/webhelp/OrcFxAPI/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Helpmenu.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Morison'sequation.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Useofdiffractionanalysisdata.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?6Dbuoys,Sparbuoyandtowedfishproperties.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?6Dbuoys,Sparbuoyandtowedfishproperties.htm
https://www.orcina.com/resources/papers-and-technical-notes/
https://www.orcina.com/resources/papers-and-technical-notes/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?6Dbuoys,Modellingasurface-piercingbuoy.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Linetypes,Data.htm

 www.orcina.com

K06 FPV Array Page 3 of 8

constructed from a single homogeneous material and means that the pipe’s structural properties

are calculated from a given Young’s modulus, material density and the inner and outer diameters.

These lines are named for the corners which they connect, i.e. the line between the corners with

FloatB and FloatD is called BD.

When building a structure which includes direct line-to-line connections, the option to include

torsion on the line data form must be enabled so that moments can be transferred through the

structure. It is also important to note that a line (or indeed any object) can only be connected to

another line at an arc length where there is a line node.

Another particularly useful feature on the line data form is the option to set a line’s length and end

orientations to be calculated from end positions. This allows a user to easily create a line between

two points whose length is the distance between those points and whose line end orientations are

automatically set. Whilst we don’t explicitly set this data in our example here, further details on

setting line end orientations can be found in this tutorial video, available from the OrcaFlex

tutorials page of the Orcina website.

Additionally, we’ve set the seabed friction policy for all lines in the structure to be none, as we do

not expect them to contact the seabed. We can check that this has been set for all lines in our

structure through the all objects data form. This data form is especially useful for when you have

many objects in a model and want to easily check for consistency or apply changes to multiple

objects at once. You can find this data form in the Shared data folder when the model browser is in

groups view. If you open this now and select Show: Other data on the top left, make sure lines are

selected as the object type, and navigate to the statics tab, you will see the seabed friction policy data

for all lines in the model.

To model the PV panels, we use 6D lumped buoys. As we are modelling thin plates, we assume that

drag is only generated in the z direction. We therefore zero the drag coefficients in the x and y

directions and assign the buoys’ properties in the z direction following guidance found on the

Modelling, data and results | 6D buoys | Hydrodynamic properties of a rectangular box help page.

For simplicity, we assume that our panels will remain out of the water throughout the simulation.

This means that we can choose not to include the effects of hydrodynamic added mass and we

have zeroed the Ca and Cm values accordingly. As the panels are in air, the defined drag data will

instead be used when accounting for wind loads on 6D buoy objects. This is discussed further in

the ‘Environment’ section below.

Connected to the metal frame, we have a constraint object called PanelTilt, which is currently

hidden from view. We can show this by selecting PanelTilt in the model browser and pressing Ctrl

+ H. This is fixed in all degrees of freedom and is simply used as a reference point to which the

four 6D buoys representing the PV panels are connected. In our model these panels have a fixed

inclination angle which will not change throughout a simulation. However, this inclination angle

can be changed in the reset state by editing the constraint data form. If we open the PanelTilt data

form, you will see the azimuth is currently set to 190°. This corresponds to a 10° tilt angle,

measured anticlockwise from the horizontal. If we increase this value to 195° (180° + 15° tilt angle)

and click OK, we see that the panels are now mounted at an angle 15° from the horizontal. Since

the length and end orientations (for lines whose length would be affected by this change) are set to

be calculated from end positions, this change to the raft configuration can be made easily. Also

connected to this constraint is a label type shape object which will be useful later for indexing the

position of a raft within the array.

Finally, we have a second constraint in this model called temporary constraint. Opening the

constraint’s data form, you can see that the in-frame is fixed in the global environment and the

http://www.orcina.com/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Linedata.htm
https://youtu.be/hD0rMiibncI
https://www.orcina.com/resources/videos/tutorials/
https://www.orcina.com/resources/videos/tutorials/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Allobjectsdataform.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Modelbrowserviews.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?6Dbuoys,Hydrodynamicpropertiesofarectangularbox.htm

 www.orcina.com

K06 FPV Array Page 4 of 8

out-frame is connected to the raft. On the degrees of freedom tab, we can see that movement of

the out-frame is fixed in the x, y and Rz directions, which means that the raft can’t float away or

yaw. This allows us to perform a static analysis without the mooring system in place, so that we

can determine the height the raft sits above the sea surface and verify that the static solution

converges as expected. This is a useful application of double-sided constraints, as connection data

of the objects in the raft doesn’t have to be changed to achieve this.

Array building using OrcFxAPI

The Python script supplied with this example, K06 FPV script.py, demonstrates one approach to

using the API to automate the model building process. Here, we have decided to prioritise clarity

and readability over efficiency, and there will be numerous alternative approaches which could

achieve the same outcome. Whilst each person’s code will inevitably vary, the API functions,

attributes, and methods will likely be the same, and these are documented in the OrcFxAPI Help.

Below we will discuss two of the functions used in slightly more detail, namely CreateClones and

MoveObjects.

CreateClones(), documented here, allows you to clone multiple objects and preserve the

connections between them, all from within the API. This is a function of the model object class and

is called using model.CreateClones([obj1, obj2, ...], model=None), the first argument being

a list of the objects you wish to clone. Alternatively, instead of a list of objects, you can pass a group

in as this first parameter and CreateClones will clone the group and all the objects within it,

including objects nested within sub-groups. The function also allows you to pass a model as the

(optional) second argument i.e. if you want to clone objects across into a different model. We

demonstrate these functionalities in our example script.

MoveObjects() is a function of the OrcFxAPI Module which allows you to move and rotate a

number of selected objects in a way equivalent to the move selected objects wizard, accessed from

the model browser in the GUI. MoveObjects(specification, points) takes two parameters. The

first, specification, is an instance of MoveObjectSpecification and specifies how to move the

points. The second, points, is a sequence of instances of MoveObjectPoint containing the points

which are to be moved. We demonstrate how this works in our script, but further details can be

found on the respective help pages linked above.

The first thing we do in our script is import the OrcFxAPI module. This provides us access to the

OrcaFlex programming interface. Second, we activate the EnableBooleanDataType policy. By

default, boolean data in OrcaFlex (such as a checkbox that you tick in the GUI) is treated in the API

as text data with possible values Yes and No. By including the given line of code in our script, we

instead allow these to be treated as Python bool data. We do this purely for convenience.

In our source model, K06 FPV module.dat we make use of object tags to define the names of the

objects that we wish to connect our constraints to. This information is recorded on the tags page

of the general data form, and we access this using the Python script. On the same tags page, we

also define a reference object, refObj, and the prefix (“Float”) of the float objects which will be

used for the move operation. This allows us to move the four floats (to which all other objects are

connected) and the reference object only. Using tags means that we don’t have to hardcode this

information into our script.

We rename the objects in the source model, to prevent any name clashing, and then move them

to the desired position in the global environment. We then clone this module from the

sourceModel into the newModel and then, if there is a module to the left create a row constraint,

and if there is a module above create a column constraint. The modules are named with a row-

http://www.orcina.com/
https://www.orcina.com/webhelp/OrcFxAPI/
https://www.orcina.com/webhelp/OrcFxAPI/Redirector.htm?Pythonreference,Model.htm#CreateClones
https://www.orcina.com/webhelp/OrcFxAPI/Redirector.htm?Pythonreference,OrcFxAPIModule.htm#MoveObjects
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Moveselectedobjectswizard.htm
https://www.orcina.com/webhelp/OrcFxAPI/Content/html/Pythonreference,MoveObjectSpecification.htm
https://www.orcina.com/webhelp/OrcFxAPI/Content/html/Pythonreference,MoveObjectPoint.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Objecttags.htm

 www.orcina.com

K06 FPV Array Page 5 of 8

column suffix, e.g. Raft3-4 is in row three and column four of the array. The connections between

these modules are named such that the row constraint connecting Raft3-3 and Raft3-4 is named

3-3/4 and a column constraint between Raft5-7 and Raft 6-7 is called 5/6-7.

We note here that double-sided connections are not only necessary to circumvent a circular

dependency issue but are more easily added into the FPV system than single-sided connection

constraints would be. This is because we only need to change the constraint’s in-frame and out-

frame connection data, whereas previously, trying to replicate the same system with a single-sided

constraint would require connecting the constraint to a parent object, and then connecting the

second object to that constraint. This would create a chain of connected objects that, when long,

can be hard to keep track of.

Mooring System modelling

Now open K06 FPV array.sim. The FPV array is moored using a buoy-catenary system with 12

buoyancy modules around the perimeter of the array. These are connected to the array by two

polyester rope bridle lines, named MooringA and MooringB. The buoys are anchored to the seabed

by a third line, MooringC; a polyester rope with a section of chain near its anchored end. Using

buoyancy modules in the mooring helps support the weight of the mooring chains and reduces

the load on the perimeter rafts in the array.

The buoyancy modules are modelled as 6D spar buoys, allowing us to model the geometry and

hydrodynamics of these in more detail. Data for these buoys is set in a similar way as for the raft

floats (described earlier), following the Modelling, data and results | 6D buoys | Modelling a

surface-piercing buoy guidance.

The line type properties for the Polyester rope were generated by the line type wizard, using the

special category ‘Rope/wire’, with ‘Polyester (8-strand Multiplait)’ selected as the construction.

Similarly, the Studlink chain line type data was generated by selecting ‘Chain’ as the special category

and then ‘Studlink’ as the link type. Further details about the line type wizard and these options are

documented here: Modelling, data and results | Lines | Line type wizard. We’ve added a small

non-zero bending stiffness to these line types to help with convergence.

Each of the mooring lines have 0.5 m long segments across their sections. This value was chosen

arbitrarily in an attempt to capture behaviour like compression in the mooring lines whilst also

keeping simulation run times relatively low. In general, if a line has too few segments, the line’s

modelled response may not represent the actual behaviour of the real system. However, if a line

has many very short, segments, then this can lead to longer simulation run times. We would

usually recommend carrying out line segmentation sensitivity checks to focus on achieving a

balance between results accuracy and computational expense.

Environment

In this model, we chose to replicate a possible sheltered, “near-shore” environment and so the

water depth has been set to 20m. In certain cases, it may be necessary to consider irregular waves

as part of the design process. However, for the sake of demonstration, we chose to model design

waves as they are often easier to set up and quicker to run. For our simulation, we use dean stream

waves of height H=0.5m and period T=5s.

We have considered a current speed of 0.5 m/s and adjusted the current options to ramped. This

means that the effects of the current are excluded from the static analysis, and the current is

instead ramped to its full value during the build-up period. The build-up period is by default the first

stage of a simulation (Stage 0) and is indicated by negative time i.e. any time before 0.0s is the

http://www.orcina.com/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Solutionmethod.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Objectconnections.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Objectconnections.htm#ChainingConnections
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?6Dbuoys,Modellingasurface-piercingbuoy.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?6Dbuoys,Modellingasurface-piercingbuoy.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Linetypewizard.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Environment,Modellingdesignwaves.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Environment,Modellingdesignwaves.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Generaldata,Analysis.htm#Stages

 www.orcina.com

K06 FPV Array Page 6 of 8

build-up period and any time after is the normal simulation period. Details on how ramping is

applied can be found in Theory | Dynamic analysis | Ramping. Sometimes, as is the case with this

model, we find that excluding the current from the static analysis helps to make convergence more

robust.

We account for the effects of wind loading in our OrcaFlex model by choosing to include wind loads

on 6D buoys on the Wind tab of the Environment data form. This is selected by default, but unlike

the default wave data, we must set our own wind speed and direction. We chose a constant wind

type which requires us to specify wind speed and direction, which we chose to be 10 m/s at a 175°

heading. This wind direction is indicated in our model visually by a solid white arrow drawn on the

view axes, but this can be adjusted on the Environment | Drawing page. We also decided to ramp

the wind from zero, and the ramping occurs in the same way as above. Further information about

wind modelling can be found on the Modelling, data and results | Environment | Wind data help

page.

Results

Now open the workspace K06 FPV results.wrk.

Explanations of each of the available constraints results can be found on the Modelling, data and

results | Constraints | Results help page. These results are coordinate-system dependent, and so

they are referred to as being either relative to global (labelled with upper-case X, Y, Z or GX, GY, GZ)

or object-relative (labelled with lower-case x, y, z or Lx, Ly, Lz). You can find further details about

this on the Theory | Coordinate systems help page.

In this example, we focus on a few local results for the constraint between Raft1-3 and Raft1-4,

named 1-3/4. Opening the constraint’s data form, we can see that the constraint in-frame is

connected to BD1-3 (on Raft1-3) and the constraint out-frame is connected to AC1-4 (on Raft1-4).

On the degrees of freedom tab, we can see that the constraint is free in Ry and fixed in all other

degrees of freedom (DOF). This means that the out-frame can rotate freely about the constraint’s

in-frame y-axis.

Let’s first consider displacement and connection forces in the local x-direction, Lx. The x result

gives the position of the out-frame with respect to the axes of the in-frame and so, because this

DOF is fixed, this should be reported as 0 at all log sample times (this is not to be confused with

out-frame X or in-frame X which give the position in global coordinates and will change throughout

the simulation). As our constraints have double-sided connections, OrcaFlex makes use of the

indirect solution method and we therefore see that these results fluctuate slightly around zero,

but still remain within the tolerance of the analysis. Because the constraint is fixed in this DOF, a

force is applied to the out-frame, by the in-frame, to hold the out-frame rigidly in position. This is

the force required to hold the Raft1-4 subsystem onto the Raft1-3 subsystem. This is given by the

out-frame connection Lx force result.

We can see the rotational movement in our nominated free DOF on the time history graph of Ry,

which gives the orientation of the out-frame relative to the in-frame. We can see that this oscillates

between ±2° throughout the simulation. The out-frame connection Ly moment would be the y

component of the total moment applied to the out frame by the in-frame to maintain a rigid

connection between the out and in frames. As our constraint has 0 rotational stiffness and the

frames can move freely in this DOF, this moment should be 0. Again, due to the constraint’s

indirect solution method, we can see that there are some very small fluctuations about this value,

but otherwise, this result is as expected.

http://www.orcina.com/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Dynamicanalysis,Ramping.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Environment,Drawing.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Environment,Winddata.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Results.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Results.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Coordinatesystems.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Solutionmethod.htm#IndirectSolutionMethod
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Generaldata,Implicitintegration.htm

 www.orcina.com

K06 FPV Array Page 7 of 8

The above explanation and observations apply to the results of all constraint objects. However,

what is the difference when dealing with constraints that have a double-sided connection?

Selecting the in-frame connection force gives us the magnitude of the force applied to the in-frame

of the constraint 1-3/4 by the object to which the in-frame is connected, BD1-3. But what if we want

to know the force applied to the out-frame of the constraint by the out-frame’s parent object, AC1-

4? In our case, the force on the out-frame by AC1-4 is equal and in the opposite direction to the

out-frame connection force. However, this is only the case because we have no applied loads or

other child objects connected to the constraint in question. In general, the most reliable way to

obtain this result would be to add a dummy constraint into the system, as suggested and further

explained in the note near the bottom of the Constraints | Results help page.

Indeterminate systems

For this model, when performing our initial static analysis, the whole system statics calculation

failed to converge due an ‘indeterminate case, singular Jacobian’ error. An indeterminate (or

underdetermined) case occurs when a model typically has some coordinates, or some

combination of coordinates, that add nothing to the physical system, but for which the OrcaFlex

solver still has to find a solution. This results in a singular Jacobian matrix, which is explained

further in Modelling, data and results | General data | Jacobians. This indeterminacy is reported

by the statics progress window, as seen below.

In our case, the model was initially indeterminate due to the configuration of the mooring system.

The mooring lines were connected to the axially symmetric cylindrical mooring buoys at the centre

of their base, directly below the buoys’ centre of mass. This meant that all directions that the buoy

could rotate about its local z-axis were equally likely, and any rotation about this axis would not

affect the forces it experiences. That’s to say, the angle of rotation of the buoy is effectively

redundant. There are therefore multiple valid solutions, and the OrcaFlex solver had no way of

deciding which one to choose. This positional indeterminacy could be resolved by connecting the

mooring lines to the buoy at a slight offset. Making this change solves our singular matrix issue

and allows the static analysis to run successfully.

Instead of identifying the issue and resolving it directly, as we did above, adding a very small non-

zero Jacobian perturbation factor (JPF) such as 10−18 would also allow the static analysis to run. We

can do this through the Jacobians tab on the general data form. This would be perfectly fine, as we

http://www.orcina.com/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Results.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Generaldata,Jacobians.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Generaldata,Jacobians.htm#JacobianPerturbationFactor

 www.orcina.com

K06 FPV Array Page 8 of 8

do not care about the rotation of our mooring buoys, and simply want to look at results for our

solar array. However, if we did want to extract the rotational orientation results of our mooring

buoys, then we must be aware that this result will be just one of the many valid solutions. Note

that using a non-zero JPF doesn’t affect the accuracy of the solution, but instead indicates that the

results may already be inaccurate because the solver doesn’t have enough information. Adding a

small non-zero JPF simply supplies a little extra information required to allow the model to run

anyway.

The same applies to models with indirect constraints. These can often have indeterminacies that

occur due to redundant degrees of freedom perceived by the solver, either in physical space or in

its nondynamical Lagrange multipliers. It can often be tricky to identify which coordinates or which

constraint degrees of freedom, are causing the system to be indeterminate, but this is necessary

to move forward with the analysis. If you decide that these coordinates or degrees of freedom are

not relevant to the results that you wish to extract, then adding a small non-zero JPF is a valid and

recommended way to allow your model to run. However, if the redundant degrees of freedom will

affect the results that you’re reporting, then these results may not be the only valid solution – and

therefore may be perceived as inaccurate when comparing with a real-world system that has no

such indeterminacies. There is a more in-depth discussion of this in terms of connection load

ambiguities in the Modelling, data and results | Constraints | Solution method help page.

In our example, we have no such issues, and our model runs with the JPF at its default value of 0.

Whilst this can often be the case, it is nevertheless important to be aware of common issues

surrounding indeterminant connection loads with indirect constraints.

http://www.orcina.com/
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Solutionmethod.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Solutionmethod.htm
https://www.orcina.com/webhelp/OrcaFlex/Redirector.htm?Constraints,Solutionmethod.htm

